Show simple item record

Silting t-Structures, ℙ-Objects, and Weyl Groupoids

dc.contributor.advisorStroppel, Catharina
dc.contributor.authorBonfert, Lukas
dc.date.accessioned2025-11-17T11:51:50Z
dc.date.available2025-11-17T11:51:50Z
dc.date.issued17.11.2025
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13693
dc.description.abstractThe main topics of this thesis are triangulated categories with t-structures and weight structures, Koszul duality, and certain generalizations of spherical objects known as ℙ-objects. The secondary topic are Weyl groupoids, which are a certain aspect of the structure theory of Lie superalgebras. The thesis consists of four rather independent parts.
In the first part we introduce derived projective covers and relate them to the notion of enough derived projectives introduced by Genovese–Lowen–Van den Bergh. Our main result uses derived projective covers to provide an if-and-only-if criterion for a t-structure with finite-length heart to be a silting t-structure in the sense of Psaroudakis–Vitória. We also provide equivalent axioms for the ST pairs introduced by Adachi–Mizuno–Yang, and formulate the bijection between simple-minded collections and silting collections due to Koenig–Yang in terms of derived projective covers.
In the second part we show that the non-positive respectively positive dg algebras obtained from silting and simple-minded collections corresponding to orthogonal weight structures and t-structures are dg Koszul dual to each other. This can be seen as a first step towards a tentative Koszul duality of weight structures and t-structures.
In the third part we consider the constructible derived category of complex projective space ℙn, equipped with the middle-perverse t-structure. We show that the simple perverse sheaf corresponding to the open stratum is a ℙn-object in the sense of Huybrechts–Thomas, and that its associated ℙ-twist is the inverse Serre functor. Moreover, we classify the ℙ-like objects in the category of perverse sheaves on ℙn. This part is joint work with Alessio Cipriani.
In the fourth part we study Weyl groupoids of contragredient Lie superalgebras. We provide a convenient graphical formulation of the definitions of Cartan graphs and Weyl groupoids introduced by Heckenberger in the context of Nichols algebras, and apply this to Lie superalgebras following Heckenberger–Yamane. We explicitly describe the Weyl groupoids of sl(m|n), osp(2m+1|2n) and osp(2m|2n) in terms of partitions. Furthermore, we compare this notion of Weyl groupoid to other similar constructions, and in particular to the root groupoid recently introduced by Gorelik–Hinich–Serganova. This part is joint work with Jonas Nehme.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjecttriangulierte Kategorien
dc.subjectt-Strukturen
dc.subjectGewichtsstrukturen
dc.subjectderiviert projektive Objekte
dc.subjectSilting-Theorie
dc.subjectKoszul-Dualität
dc.subjectperverse Garben
dc.subjectP-Objekte
dc.subjectSerre-Funktor
dc.subjectLie-Superalgebren
dc.subjectWeyl-Gruppoide
dc.subjecttriangulated categories
dc.subjectt-structures
dc.subjectweight structures
dc.subjectderived projective objects
dc.subjectsilting theory
dc.subjectKoszul duality
dc.subjectperverse sheaves
dc.subjectP-objects
dc.subjectSerre functor
dc.subjectLie superalgebras
dc.subjectWeyl groupoids
dc.subject.ddc510 Mathematik
dc.titleSilting t-Structures, ℙ-Objects, and Weyl Groupoids
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-86340
dc.relation.arxiv2309.00554
dc.relation.arxiv2506.06051
dc.relation.doihttps://doi.org/10.1016/j.jalgebra.2023.12.004
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8634
ulbbnediss.date.accepted27.10.2025
ulbbnediss.instituteAngegliederte Institute, verbundene wissenschaftliche Einrichtungen : Max-Planck-Institut für Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeMazorchuk, Volodymyr
ulbbnediss.contributor.orcidhttps://orcid.org/0009-0007-3288-1876


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright