Zur Kurzanzeige

q-Hodge filtrations, Habiro cohomology, and ku

dc.contributor.advisorScholze, Peter
dc.contributor.authorWagner, Ferdinand
dc.date.accessioned2026-01-13T09:39:00Z
dc.date.available2026-01-13T09:39:00Z
dc.date.issued13.01.2026
dc.identifier.urihttps://hdl.handle.net/20.500.11811/13819
dc.description.abstractPeter Scholze has raised the question whether some variant of the q-de Rham complex is already defined over the Habiro ring. Such a variant should then be called Habiro cohomology.
In Part I of this thesis we show that Habiro cohomology exists whenever the q-de Rham complex can be equipped with a q-Hodge filtration: a q-deformation of the Hodge filtration, subject to some reasonable conditions. To any such q-Hodge filtration we associate a small modification of the q-de Rham complex, which we call the q-Hodge complex, and show that it descends canonically to the Habiro ring. This construction recovers and generalises the Habiro ring of a number field from work of Garoufalidis-Scholze-Wheeler-Zagier and it is closely related to the q-de Rham-Witt complexes from previous work of the author.
While there is no canonical q-Hodge filtration in general, we show that such a filtration does exist in many cases of interest. For example, for a smooth scheme X over the integers, a canonical choice of q-Hodge filtration does exist as soon as one inverts all primes up to the dimension of X.
In Part II, we explain how another large class of examples arises from homotopy theory: If R is a quasisyntomic ring which admits an E2-lift to the sphere spectrum, one can use the even filtration on topological negative cyclic homology over the complex K-theory spectra ku and KU to obtain a q-Hodge filtration and the associated q-Hodge complex for R. We also explain how the Habiro descent of the q-Hodge complex can be recovered using genuine equivariant homotopy theory.
In Part III, which is based on joint work with Samuel Meyer, we study a refinement of topological Hochschild/negative cyclic homology (THH/TC-), constructed by Efimov and Scholze as a consequence of Efimov's theorem on the rigidity of localising motives. Using the results from Part II, we'll compute refined TC- in an interesting special case.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectHabiro cohomology
dc.subjectq-de Rham cohomology
dc.subjectprismatic cohomology
dc.subjecttopological Hochschild homology q-deformations
dc.subjecteven filtration
dc.subject.ddc510 Mathematik
dc.titleq-Hodge filtrations, Habiro cohomology, and ku
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-87291
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID8729
ulbbnediss.date.accepted08.01.2026
ulbbnediss.instituteAngegliederte Institute, verbundene wissenschaftliche Einrichtungen : Max-Planck-Institut für Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeAntieau, Benjamin


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright