von Reumont, Bjoern Marcus: Molecular insights to crustacean phylogeny. - Bonn, 2010. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5N-20291
@phdthesis{handle:20.500.11811/4523,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5N-20291,
author = {{Bjoern Marcus von Reumont}},
title = {Molecular insights to crustacean phylogeny},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2010,
month = mar,

note = {This thesis aims to resolve internal relationships of the major crustacean groups inferring phylogenies with molecular data. New molecular and neuroanatomical data support the scenario that the Hexapoda might have evolved from Crustacea. Most molecular studies of crustaceans relied on single gene or multigene analyses in which for most cases partly sequenced rRNA genes were used. However, intensive data quality and alignment assessments prior to phylogenetic reconstructions are not conducted in most studies. One methodological aim in this thesis was to implement new tools to infer data quality, to improve alignment quality and to test the impact of complex modeling of the data. Two of the three phylogenetic analyses in this thesis are also based on rRNA genes. In analysis (A) 16S rRNA, 18S rRNA and COI sequences were analyzed. RY coding of the COI fragment, an alignment procedure that considers the secondary structure of RNA molecules and the exclusion of alignment positions of ambiguous positional homology was performed to improve data quality. Anyhow, by extensive network reconstructions it was shown that the signal quality in the chosen and commonly used markers is not suitable to infer crustacean phylogeny, despite the extensive data processing and optimization. This result draws a new light on previous studies relying on these markers. In analyses (B) completely sequenced 18S and 28S rRNA genes were used to reconstruct the phylogeny. Base compositional heterogeneity was taken into account based on the finding of analysis (A), additionally to secondary structure alignment optimization and alignment assessment. The complex modeling to compare time-heterogeneous versus time-homogenous processes in combination with mixed models for an implementation of secondary structures was only possible applying the Bayesian software package PHASE. The results clearly demonstrated that complex modeling counts and that ignoring time-heterogeneous processes can mislead phylogenetic reconstructions. Some results enlight the phylogeny of Crustaceans, for the first time the Cephalocarida (Hutchinsoniella macracantha) were placed in a clade with the Branchiopoda, which morphologically is plausible. Compared to the time-homogeneous tree the time-heterogeneous tree gives lower support values for some nodes. It can be suggested, that the incorporation of base compositional heterogeneity in phylogenetic analysis improves the reliability of the topology. The Pancrustacea are supported maximally in both approaches, but internal relations are not reliably reconstructed. One result of this analysis is that the phylogenetic signal in rRNA data might be eroded for crustaceans. Recent publications presented analyses based on phylogenomic data, to reconstruct mainly metazoan phylogeny. The supermatrix method seems to outperform the supertree approach. In this analysis the supermatrix approach was applied. Crustaceans were collected to conduct EST sequencing projects and to include the resulting sequences combined with public sequence data into a phylogenomic analysis (C). New and innovative reduction heuristics were performed to condense the dataset. The results showed that the matrix implementation of the reduced dataset ends in a more reliable topology in which most node values are highly supported. In analysis (C) the Branchiopoda were positioned as sister-group to Hexapoda, a differing result to analysis (A) and (B), but that is in line with other phylogenomic studies.},
url = {https://hdl.handle.net/20.500.11811/4523}
}

The following license files are associated with this item:

InCopyright