Show simple item record

Robust Wide-Baseline Stereo Matching for Sparsely Textured Scenes

dc.contributor.advisorFörstner, Wolfgang
dc.contributor.authorDickscheid, Timo
dc.date.accessioned2020-04-16T07:43:11Z
dc.date.available2020-04-16T07:43:11Z
dc.date.issued19.08.2011
dc.identifier.urihttps://hdl.handle.net/20.500.11811/4746
dc.description.abstractThe task of wide baseline stereo matching algorithms is to identify corresponding elements in pairs of overlapping images taken from significantly different viewpoints. Such algorithms are a key ingredient to many computer vision applications, including object recognition, automatic camera orientation, 3D reconstruction and image registration. Although today's methods for wide baseline stereo matching produce reliable results for typical application scenarios, they assume properties of the image data that are not always granted, for example a significant amount of distinctive surface texture. For such problems, highly advanced algorithms have been proposed, which are often very problem specific, difficult to implement and hard to transfer to new matching problems. The motivation for our work comes from the belief that we can find a generic formulation for robust wide baseline image matching that is able to solve difficult matching problems and at the same time applicable to a variety of applications. It should be easy to implement, and have good semantic interpretability. Therefore our key contribution is the development of a generic statistical model for wide baseline stereo matching, which seamlessly integrates different types of image features, similarity measures and spatial feature relationships as information cues. It unifies the ideas of existing approaches into a Bayesian formulation, which has a clear statistical interpretation as the MAP estimate of a binary classification problem. The model ultimately takes the form of a global minimization problem that can be solved with standard optimization techniques. The particular type of features, measures, and spatial relationships however is not prescribed. A major advantage of our model over existing approaches is its ability to compensate weaknesses in one information cue implicitly by exploiting the strength of others. In our experiments we concentrate on images of sparsely textured scenes as a specifically difficult matching problem. Here the amount of stable image features is typically rather small, and the distinctiveness of feature descriptions often low. We use the proposed framework to implement a wide baseline stereo matching algorithm that can deal better with poor texture than established methods. For demonstrating the practical relevance, we also apply this algorithm to a system for automatic image orientation. Here, the task is to reconstruct the relative 3D positions and orientations of the cameras corresponding to a set of overlapping images. We show that our implementation leads to more successful results in case of sparsely textured scenes, while still retaining state of the art performance on standard datasets.
dc.description.abstractRobuste Merkmalszuordnung für Bildpaare schwach texturierter Szenen mit deutlicher Stereobasis
Die Aufgabe von Wide Baseline Stereo Matching Algorithmen besteht darin, korrespondierende Elemente in Paaren überlappender Bilder mit deutlich verschiedenen Kamerapositionen zu bestimmen. Solche Algorithmen sind ein grundlegender Baustein für zahlreiche Computer Vision Anwendungen wie Objekterkennung, automatische Kameraorientierung, 3D Rekonstruktion und Bildregistrierung. Die heute etablierten Verfahren für Wide Baseline Stereo Matching funktionieren in typischen Anwendungsszenarien sehr zuverlässig. Sie setzen jedoch Eigenschaften der Bilddaten voraus, die nicht immer gegeben sind, wie beispielsweise einen hohen Anteil markanter Textur. Für solche Fälle wurden sehr komplexe Verfahren entwickelt, die jedoch oft nur auf sehr spezifische Probleme anwendbar sind, einen hohen Implementierungsaufwand erfordern, und sich zudem nur schwer auf neue Matchingprobleme übertragen lassen. Die Motivation für diese Arbeit entstand aus der Überzeugung, dass es eine möglichst allgemein anwendbare Formulierung für robustes Wide Baseline Stereo Matching geben muß, die sich zur Lösung schwieriger Zuordnungsprobleme eignet und dennoch leicht auf verschiedenartige Anwendungen angepasst werden kann. Sie sollte leicht implementierbar sein und eine hohe semantische Interpretierbarkeit aufweisen. Unser Hauptbeitrag besteht daher in der Entwicklung eines allgemeinen statistischen Modells für Wide Baseline Stereo Matching, das verschiedene Typen von Bildmerkmalen, Ähnlichkeitsmaßen und räumlichen Beziehungen nahtlos als Informationsquellen integriert. Es führt Ideen bestehender Lösungsansätze in einer Bayes'schen Formulierung zusammen, die eine klare Interpretation als MAP Schätzung eines binären Klassifikationsproblems hat. Das Modell nimmt letztlich die Form eines globalen Minimierungsproblems an, das mit herkömmlichen Optimierungsverfahren gelöst werden kann. Der konkrete Typ der verwendeten Bildmerkmale, Ähnlichkeitsmaße und räumlichen Beziehungen ist nicht explizit vorgeschrieben. Ein wichtiger Vorteil unseres Modells gegenüber vergleichbaren Verfahren ist seine Fähigkeit, Schwachpunkte einer Informationsquelle implizit durch die Stärken anderer Informationsquellen zu kompensieren. In unseren Experimenten konzentrieren wir uns insbesondere auf Bilder schwach texturierter Szenen als ein Beispiel schwieriger Zuordnungsprobleme. Die Anzahl stabiler Bildmerkmale ist hier typischerweise gering, und die Unterscheidbarkeit der Merkmalsbeschreibungen schlecht. Anhand des vorgeschlagenen Modells implementieren wir einen konkreten Wide Baseline Stereo Matching Algorithmus, der besser mit schwacher Textur umgehen kann als herkömmliche Verfahren. Um die praktische Relevanz zu verdeutlichen, wenden wir den Algorithmus für die automatische Bildorientierung an. Hier besteht die Aufgabe darin, zu einer Menge überlappender Bilder die relativen 3D Kamerapositionen und Kameraorientierungen zu bestimmen. Wir zeigen, dass der Algorithmus im Fall schwach texturierter Szenen bessere Ergebnisse als etablierte Verfahren ermöglicht, und dennoch bei Standard-Datensätzen vergleichbare Ergebnisse liefert.
dc.language.isoeng
dc.relation.ispartofseriesSchriftenreihe / Institut für Geodäsie und Geoinformation ; 36
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectPhotogrammetrie
dc.subjectBildverarbeitung
dc.subjectBildmerkmale
dc.subjectMerkmalszuordnung
dc.subject3D-Rekonstruktion
dc.subjectPhotogrammetry
dc.subjectComputer Vision
dc.subjectImage Processing
dc.subjectFeature Matching
dc.subject3D reconstruction
dc.subject.ddc004 Informatik
dc.subject.ddc550 Geowissenschaften
dc.subject.ddc620 Ingenieurwissenschaften und Maschinenbau
dc.titleRobust Wide-Baseline Stereo Matching for Sparsely Textured Scenes
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5N-26031
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID2603
ulbbnediss.date.accepted15.07.2011
ulbbnediss.instituteLandwirtschaftliche Fakultät : Institut für Geodäsie und Geoinformation (IGG)
ulbbnediss.fakultaetLandwirtschaftliche Fakultät
dc.contributor.coRefereePlümer, Lutz


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright