Albertoni, Barbara: Biophysical analysis of protein-protein and protein-small molecule interactions. - Bonn, 2011. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc:
author = {{Barbara Albertoni}},
title = {Biophysical analysis of protein-protein and protein-small molecule interactions},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2011,
month = nov,

note = {The validation of small molecule inhibitors identified by high throughput screening requires a set of robust assays for interaction analysis. Here I describe the implementation of three methods: bioluminescence resonance energy transfer (BRET) for the analysis of protein/protein interaction in cells, surface plasmon resonance (SPR) for the measurement of binding kinetics in vitro and capture compound mass spectrometry (CCMS) for the determination of binding specificity in proteome.
All the methods described were tested on cytohesins, a family of guanine nucleotide exchange factors. The very recent discovery of their additional role in the regulation of receptor tyrosine kinases (RTKs) signalling and the availability of specific small molecule inhibitors (the Secins) made them an interesting target.
BRET was applied to the analysis of a possible binding of the cytohesin ARNO to the RTK EGF receptor (EGFR). Two strategies were devised: a direct, where the interaction of ARNO and EGFR was monitored, and an indirect, which followed the changes in the EGFR/EGFR interaction upon overexpression of ARNO.
Two SPR approaches were developed to analyse the interaction between ARNO and the EGFR on the one hand, and to determine the kinetic parameters of binding of ARNO to its inhibitor Secin16 on the other hand.
For CCMS, a photoreactive affinity based SecinH3 probe (SecinH3-TPD) was synthesised and its ability to specifically label ARNO was shown, although the labelling yield was limited by low solubility. A protocol for the enrichment, digestion and MS-analysis of the labelled proteins was established.},

url = {}

The following license files are associated with this item: