Hennen, Stephanie Monika: Elucidating agonist-induced signaling patterns of human G protein-coupled receptor GPR17 and uncovering pranlukast as a biased mixed agonist-antagonist at GPR17. - Bonn, 2011. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5n-26904
@phdthesis{handle:20.500.11811/5056,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5n-26904,
author = {{Stephanie Monika Hennen}},
title = {Elucidating agonist-induced signaling patterns of human G protein-coupled receptor GPR17 and uncovering pranlukast as a biased mixed agonist-antagonist at GPR17},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2011,
month = nov,

note = {The progress of human genome sequencing has revealed the existence of several hundred orphan G protein-coupled receptors (GPCRs), whose endogenous ligands are not yet identified, thus their deorphanization and characterization is fundamental in order to clarify their physiological and pathological role as well as their relevance as new drug targets. Recently, the orphan GPCR GPR17 that is phylogenetically and structurally related to the known P2Y and CysLT receptors has been identified as a dual uracil nucleotide/cysteinyl-leukotriene receptor. In spite of this, these deorphanization efforts could not be verified yet by independent laboratories, thus this classification remains a controversial matter and GPR17 most likely still represents an orphan GPCR. Additionally, a subsequent study revealed a ligand-independent regulatory role for GPR17 suppressing CysLT1 receptor function via GPCR-GPCR interactions. By means of a high throughput pharmacogenomic approach our group has identified a small molecule agonist for GPR17 that is used as pharmacological tool for characterization of ligand-dependent behaviors triggered by this receptor. As a consequence, in the present thesis, evidence is provided that GPR17 does not lack the common features of GPCR signaling. Upon agonist challenge GPR17 induces signaling via promiscuous G protein-coupling (Gαi/o, Gαq and Gαs) in an agonist-concentration-dependent manner, as determined by means of traditional second messenger assays (cAMP and IP1) and by the label-free dynamic mass redistribution (DMR) technology in two different cellular backgrounds (CHO and HEK293 cells) engineered to stably express the short isoform of human GPR17. The use of ELISA and immunofluorescence techniques revealed that activation of GPR17 with the agonist is also linked with a time-dependent reduction of cell surface expression. Furthermore, GPR17 recruits β-arrestin2 upon ligand-stimulation in a G protein-dependent and –independent manner as monitored by use of bioluminescence resonance energy transfer (BRET2) analyses. The GPR17-mediated signaling can be efficiently abrogated by the CysLT1 antagonist pranlukast in a non-competitive mode of action, but not by montelukast, zafirlukast and MK571, as investigated by use of DMR analyses, traditional second messenger assays and BRET2 approach. Additionally, evidence is provided that pranlukast acts as a mixed agonist/antagonist at GPR17, differentially modulating individual signaling pathways. Furthermore, it is demonstrated that β-arrestin2, known as scaffolding protein involved in desensitization and trafficking processes of GPCRs, exhibits the capability to fine-tune G protein signaling specifity of GPR17 via shifting the preference to the most preferred G protein subunit (here Gαi/o), a phenomenon that has not been described before.},
url = {https://hdl.handle.net/20.500.11811/5056}
}

The following license files are associated with this item:

InCopyright