Zur Kurzanzeige

United Elliptic Homology

dc.contributor.advisorSchwede, Stefan
dc.contributor.authorMeier, Lennart
dc.date.accessioned2020-04-18T01:27:04Z
dc.date.available2020-04-18T01:27:04Z
dc.date.issued11.09.2012
dc.identifier.urihttps://hdl.handle.net/20.500.11811/5378
dc.description.abstractWe study the categories of modules over real K-theory and TMF. Inspired by work of Bousfield, we consider TMF-modules at the prime 3 which are relatively free with respect to TMF(2). We show that a large class of these can be iteratively built from TMF by coning off torsion elements and killing generators. This is based on a detailed study of vector bundles on the moduli stack of elliptic curves. Furthermore, we consider examples of TMF-modules and show that the categories of TMF-modules and quasi-coherent sheaves on the derived moduli stack of elliptic curves are equivalent (at primes bigger than 2).en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectElliptische Kohomologie
dc.subjectstabile Homotopietheorie
dc.subjectVektorbündel
dc.subjecttopologische Modulformen
dc.subjectElliptic cohomology
dc.subjectStable homotopy theory
dc.subjectVector Bundles
dc.subjectTopological modular forms
dc.subject.ddc510 Mathematik
dc.titleUnited Elliptic Homology
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5n-29694
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID2969
ulbbnediss.date.accepted22.08.2012
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeLaures, Gerd


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright