Show simple item record

Finite Element Methods for Geometric Problems

dc.contributor.advisorBartels, Sören
dc.contributor.authorRaisch, Alexander Helmut-Wilhelm
dc.date.accessioned2020-04-18T02:28:01Z
dc.date.available2020-04-18T02:28:01Z
dc.date.issued12.10.2012
dc.identifier.urihttps://hdl.handle.net/20.500.11811/5398
dc.description.abstractIn the herewith presented work we numerically treat geometric partial differential equations using finite element methods. Problems of this type appear in many applications from physics, biology and engineering use.
We may partition the work in two blocks. The first one, including the chapters two to five, is about the approximation of stationary points of conformally invariant, nonlinear, elliptic energy functionals. Main interest is a compactness result for accumulation points of their discrete counterparts. The corresponding Euler-Lagrange equations are nonlinear, elliptic and of second order. They contain critical nonlinearities that are quadratic in the first derivatives. Thus, accumulation points of solutions to the discrete problem are not solutions of the continuous problem in general. We deduce a weak formulation in a mixed form and chose appropriate spaces for the discretization. First we show existence of discrete solutions and then, by the use of compensated compactness and standard finite element arguments, we establish convergence. Finally we introduce an iterative algorithm for the numerical realization and run different simulations. Hereby we confirm theoretical predictions derived in the stability analysis.
The second part is about the derivation of gradient flows for shape functionals and their discretization with parametric finite elements. First, we consider the Willmore energy of a twodimensional surface in the threedimensional ambient space and deduce its first variation. Afterwards we phrase the corresponding gradient flow in a weak form and discuss possible discretizations. During the further progress of the work we modell cell membranes and the effects of surface active agents on the shape of these cells. Numerical simulations with closed surface give promising results and a reason to intensify the research in this field.
dc.description.abstractFinite Elemente Methoden für Geometrische Probleme
In der vorliegenden Dissertationsschrift geht es um die numerische Behandlung geometrischer partieller Differentialgleichungen unter Verwendung von Finite Elemente Methoden. Probleme dieser Art treten in einer Vielzahl von physikalischen, technischen und biologischen Anwendungen auf.
Thematisch lässt sich die Arbeit in zwei Blöcke aufteilen. In den Kapiteln zwei bis fünf geht es um die Approximation stationärer Punkte konform invarianter, nichtlinearer, elliptischer Energiefunktionale. Das Hauptaugenmerk liegt dabei auf einem Kompaktheitsresultat für Häufungspunkte der diskretisierten Energiefunktionale. Die Euler Lagrange Gleichungen sind elliptisch und von zweiter Ordnung. Sie beinhalten kritische Nichtlinearitäten welche quadratisch von den ersten Ableitungen abhängen. Dies f¨hrt dazu, dass Häufungspunkte von Lösungen der diskretisierten Gleichung nicht zwangsläufig Lösungen der ursprünglichen Gleichung sind. Wir leiten eine schwache Formulierung der Gleichung in gemischter Form her und wählen stabile Finite Elemente Paare für die Diskretisierung. Zunächst zeigen wir, dass Lösungen der diskreten gemischten Formulierung Sattelpunkte eines erweiterten diskreten Energiefunktionals sind und schließen daraus auf die Existenz diskreter Löosungen. Um zu beweisen, dass Häufungspunkte der diskreten Sattelpunkte tatsächlich Lösungen der schwachen Formulierung sind bedienen wir uns einigen Resultaten der kompensierten Kompaktheit sowie bekannten Techniken aus dem Bereich der Finiten Elemente. Schließlich stellen wir einen iterativen Algorithmus für die numerische Realisierung auf und föhren mehrere Simulationen durch. Theoretische Stabilitätsergebnisse für den Algorithmus werden dabei numerisch bestätigt.
Im zweiten Teil stehen die Herleitung von Gradientenflüssen von Flächenfunktionalen (shape functional) sowie deren Diskretisierung unter Verwendung von Parametrischen Finite Elemente Methoden im Mittelpunkt. Wir betrachten zunächst die sogenannte Willmore Energie einer zweidimensionalen Fläche im dreidimensionalen Raum und bestimmen deren erste Variation. Anschließend formulieren wir den zugehörigen Gradientenfluss in schwacher Form und diskutieren eine Diskretisierung mittels parametrischer Finite Elemente. Im weiteren Verlauf diskutieren wir die Modellierung von Zellmembranen und die Wirkung von oberflächenaktiven Substanzen (surfactants) auf die Form von Zellen. Numerische Simulationen mit geschlossenen Flächen liefern viel versprechende Resultate und geben Anlass zu weiteren Forschungsarbeiten in diesem Bereich.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectNumerische Analysis
dc.subjectPartielle Differentialgleichung
dc.subjectMathematische Modellierung
dc.subjectWillmore-Energie
dc.subjectFlächen vorgeschriebener Krümmung
dc.subjectNumerical Analysis
dc.subjectPartial Differential Equation
dc.subjectMathematical Modelling
dc.subjectWillmore Energy
dc.subjectSurfaces of Prescribed Mean Curvature
dc.subject.ddc510 Mathematik
dc.titleFinite Element Methods for Geometric Problems
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5n-30200
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID3020
ulbbnediss.date.accepted04.09.2012
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Institut für angewandte Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeRumpf, Martin


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright