Thonfeld, Frank: The Impact of Sensor Characteristics and Data Availability on Remote Sensing Based Change Detection. - Bonn, 2014. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5n-38500
@phdthesis{handle:20.500.11811/6212,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5n-38500,
author = {{Frank Thonfeld}},
title = {The Impact of Sensor Characteristics and Data Availability on Remote Sensing Based Change Detection},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2014,
month = dec,

note = {Land cover and land use change are among the major drivers of global change. In a time of mounting challenges for sustainable living on our planet any research benefits from interdisciplinary collaborations to gain an improved understanding of the human-environment system and to develop suitable and improve existing measures of natural resource management. This includes comprehensive understanding of land cover and land use changes, which is fundamental to mitigate global change. Remote sensing technology is essential for the analyses of the land surface (and hence related changes) because it offers cost-effective ways of collecting data simultaneously over large areas. With increasing variety of sensors and better data availability, the application of remote sensing as a means to assist in modeling, to support monitoring, and to detect changes at various spatial and temporal scales becomes more and more feasible. The relationship between the nature of the changes on the land surface, the sensor properties, and the conditions at the time of acquisition influences the potential and quality of land cover and land use change detection. Despite the wealth of existing change detection research, there is a need for new methodologies in order to efficiently explore the huge amount of data acquired by remote sensing systems with different sensor characteristics. The research of this thesis provides solutions to two main challenges of remote sensing based change detection.
First, geometric effects and distortions occur when using data taken under different sun-target-sensor geometries. These effects mainly occur if sun position and/or viewing angles differ between images. This challenge was met by developing a theoretical framework of bi-temporal change detection scenarios. The concept includes the quantification of distortions that can occur in unfavorable situations. The invention and application of a new method – the Robust Change Vector Analysis (RCVA) – reduced the detection of false changes due to these distortions. The quality and robustness of the RCVA were demonstrated in an example of bi-temporal cross-sensor change detection in an urban environment in Cologne, Germany. Comparison with a state-of-the-art method showed better performance of RCVA and robustness against thresholding.
Second, this thesis provides new insights into how to optimize the use of dense time series for forest cover change detection. A collection of spectral indices was reviewed for their suitability to display forest structure, development, and condition at a study site on Vancouver Island, British Columbia, Canada. The spatio-temporal variability of the indices was analyzed to identify those indices, which are considered most suitable for forest monitoring based on dense time series. Amongst the indices, the Disturbance Index (DI) was found to be sensitive to the state of the forest (i.e., forest structure). The Normalized Difference Moisture Index (NDMI) was found to be spatio-temporally stable and to be the most sensitive index for changes in forest condition. Both indices were successfully applied to detect abrupt forest cover changes. Further, this thesis demonstrated that relative radiometric normalization can obscure actual seasonal variation and long-term trends of spectral signals and is therefore not recommended to be incorporated in the time series pre-processing of remotely-sensed data. The main outcome of this part of the presented research is a new method for detecting discontinuities in time series of spectral indices. The method takes advantage of all available information in terms of cloud-free pixels and hence increases the number of observations compared to most existing methods. Also, the first derivative of the time series was identified (together with the discontinuity measure) as a suitable variable to display and quantify the dynamic of dense Landsat time series that cannot be observed with less dense time series. Given that these discontinuities are predominantly related to abrupt changes, the presented method was successfully applied to clearcut harvest detection. The presented method detected major events of forest change at unprecedented temporal resolution and with high accuracy (93% overall accuracy).
This thesis contributes to improved understanding of bi-temporal change detection, addressing image artifacts that result from flexible acquisition features of modern satellites (e.g., off-nadir capabilities). The demonstrated ability to efficiently analyze cross-sensor data and data taken under unfavorable conditions is increasingly important for the detection of many rapid changes, e.g., to assist in emergency response.
This thesis further contributes to the optimized use of remotely sensed time series for improving the understanding, accuracy, and reliability of forest cover change detection. Additionally, the thesis demonstrates the usability of and also the necessity for continuity in medium spatial resolution satellite imagery, such as the Landsat data, for forest management. Constellations of recently launched (e.g., Landsat 8 OLI) and upcoming sensors (e.g., Sentinel-2) will deliver new opportunities to apply and extend the presented methodologies.},

url = {https://hdl.handle.net/20.500.11811/6212}
}

The following license files are associated with this item:

InCopyright