Szécsi, Dorottya: The evolution of low-metallicity massive stars. - Bonn, 2016. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc:
author = {{Dorottya Szécsi}},
title = {The evolution of low-metallicity massive stars},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2016,
month = aug,

note = {Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium – in other words, low-metallicity environments – is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution.
Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf–Rayet stars. However, as opposed to Wolf–Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy.
On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear burning products in the same ratio as observed today in globular clusters stars.
Further elaborating the fast rotating TWUIN star models, we predict that some of them will become Wolf–Rayet stars near the end of their lives. From this we show that our models can self-consistently explain both the high ionizing flux and the number of Wolf–Rayet stars in I Zwicky 18. Moreover, some of our models are predicted to explode as long-duration gamma-ray bursts. Thus, we speculate that the high ionizing flux observed can be a signpost for upcoming gamma-ray bursts in dwarf galaxies.
Although our models have been applied to interpret observations of globular clusters and dwarf galaxies, we point out that they could also be used in the context of other low-metallicity environments as well. Understanding the early Universe, for example, requires to have a solid knowledge of how massive stars at low-metallicity live and interact with their environments. Thus, we expect that the models and results presented in this thesis will be beneficial for not only the massive star community, but for the broader astronomy and cosmology community as well.},

url = {}

The following license files are associated with this item: