Show simple item record

Plasticity as the Γ-limit of a Dislocation Energy

dc.contributor.advisorMüller, Stefan
dc.contributor.authorGinster, Janusz
dc.date.accessioned2020-04-23T18:54:51Z
dc.date.available2020-04-23T18:54:51Z
dc.date.issued19.07.2017
dc.identifier.urihttps://hdl.handle.net/20.500.11811/7110
dc.description.abstractIn this thesis, we derive macroscopic crystal plasticity models from mesoscopic dislocation models by means of Γ-convergence as the interatomic distance tends to zero. Crystal plasticity is the effect of a crystal undergoing an irreversible change of shape in response to applied forces. At the atomic scale, dislocations --- which are local defects of the crystalline structure --- are considered to play a main role in this effect. We concentrate on reduced two-dimensional models for straight parallel edge dislocations.
Firstly, we consider a model with a nonlinear, rotationally invariant elastic energy density with mixed growth. Under the assumption of well-separateness of dislocations, we identify all scaling regimes of the stored elastic energy with respect to the number of dislocations and prove Γ-convergence in all regimes. As the main mathematical tool to control the non-convexity induced by the rotational invariance of the energy, we prove a generalized rigidity estimate for fields with non-vanishing curl. For a given function with values in the set of 2x2 matrices, the estimate provides a quantitative bound for the distance to a specific rotation in terms of the distance to the set of rotations and the curl of the function. The most important ingredient for the proof is a fine estimate which shows that in two dimensions an integrable vector-valued function f can be decomposed into two parts belonging to certain negative Sobolev spaces with critical exponent such that corresponding estimates depend only on div f and the integral of |f|. This is a generalization of an estimate due to Bourgain and Br'ezis.
Secondly, we consider a dislocation model in the setting of linearized elasticity. The main difference to the first case above and existing literature is that we do not assume well-separateness of dislocations. In order to prove meaningful lower bounds, we adapt ball construction techniques which have been used successfully in the context of the Ginzburg-Landau functional. The building block for this technique are good lower bounds on annuli. In contrast to the vortices in the Ginzburg-Landau model, in the setting of linear elasticity, a massive loss of rigidity can be observed on thin annuli which leads to inadequate lower bounds. Hence, our analysis focuses on finding thick annuli which carry almost all relevant energy.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectCalculus of Variations
dc.subjectΓ-Convergence
dc.subjectDislocations
dc.subjectPlasticity
dc.subjectRigidity
dc.subject.ddc510 Mathematik
dc.titlePlasticity as the Γ-limit of a Dislocation Energy
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5n-46126
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID4612
ulbbnediss.date.accepted21.12.2016
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Institut für angewandte Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeConti, Sergio


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright