Singh, Kuldeep: Towards Dynamic Composition of Question Answering Pipelines. - Bonn, 2019. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5n-54700
@phdthesis{handle:20.500.11811/7929,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5n-54700,
author = {{Kuldeep Singh}},
title = {Towards Dynamic Composition of Question Answering Pipelines},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2019,
month = may,

note = {Question answering (QA) over knowledge graphs has gained significant momentum over the past five years due to the increasing availability of large knowledge graphs and the rising importance of question answering for user interaction. DBpedia has been the most prominently used knowledge graph in this setting. QA systems implement a pipeline connecting a sequence of QA components for translating an input question into its corresponding formal query (e.g. SPARQL); this query will be executed over a knowledge graph in order to produce the answer of the question. Recent empirical studies have revealed that albeit overall effective, the performance of QA systems and QA components depends heavily on the features of input questions, and not even the combination of the best performing QA systems or individual QA components retrieves complete and correct answers. Furthermore, these QA systems cannot be easily reused, extended, and results cannot be easily reproduced since the systems are mostly implemented in a monolithic fashion, lack standardised interfaces and are often not open source or available as Web services. All these drawbacks of the state of the art that prevents many of these approaches to be employed in real-world applications.
In this thesis, we tackle the problem of QA over knowledge graph and propose a generic approach to promote reusability and build question answering systems in a collaborative effort. Firstly, we define qa vocabulary and Qanary methodology to develop an abstraction level on existing QA systems and components. Qanary relies on qa vocabulary to establish guidelines for semantically describing the knowledge exchange between the components of a QA system. We implement a component-based modular framework called "Qanary Ecosystem" utilising the Qanary methodology to integrate several heterogeneous QA components in a single platform. We further present Qaestro framework that provides an approach to semantically describing question answering components and effectively enumerates QA pipelines based on a QA developer requirements. Qaestro provides all valid combinations of available QA components respecting the input-output requirement of each component to build QA pipelines. Finally, we address the scalability of QA components within a framework and propose a novel approach that chooses the best component per task to automatically build QA pipeline for each input question. We implement this model within FRANKENSTEIN, a framework able to select QA components and compose pipelines. FRANKENSTEIN extends Qanary ecosystem and utilises qa vocabulary for data exchange. It has 29 independent QA components implementing five QA tasks resulting 360 unique QA pipelines. Each approach proposed in this thesis (Qanary methodology, Qaestro, and FRANKENSTEIN) is supported by extensive evaluation to demonstrate their effectiveness. Our contributions target a broader research agenda of offering the QA community an efficient way of applying their research to a research field which is driven by many different fields, consequently requiring a collaborative approach to achieve significant progress in the domain of question answering.},

url = {http://hdl.handle.net/20.500.11811/7929}
}

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright