Show simple item record

Chemoinformatics-Driven Approaches for Kinase Drug Discovery

dc.contributor.advisorBajorath, Jürgen
dc.contributor.authorMiljković, Filip
dc.date.accessioned2020-04-27T13:49:06Z
dc.date.available2020-04-27T13:49:06Z
dc.date.issued07.01.2020
dc.identifier.urihttps://hdl.handle.net/20.500.11811/8258
dc.description.abstractGiven their importance for the majority of cell physiology processes, protein kinases are among the most extensively studied protein targets in drug discovery. Inappropriate regulation of their basal levels results in pathophysiological disorders. In this regard, small-molecule inhibitors of human kinome have been developed to treat these conditions effectively and improve the survival rates and life quality of patients. In recent years, kinase-related data has become increasingly available in the public domain. These large amounts of data provide a rich knowledge source for the computational studies of kinase drug discovery concepts.
This thesis aims to systematically explore properties of kinase inhibitors on the basis of publicly available data. Hence, an established "selectivity versus promiscuity" conundrum of kinase inhibitors is evaluated, close structural analogs with diverging promiscuity levels are analyzed, and machine learning is employed to classify different kinase inhibitor binding modes. In the first study, kinase inhibitor selectivity trends are explored on the kinase pair level where kinase structural features and phylogenetic relationships are used to explain the obtained selectivity information. Next, selectivity of clinical kinase inhibitors is inspected on the basis of cell-based profiling campaign results to consolidate the previous findings. Further, clinical candidates are mapped to medicinal chemistry sources and promiscuity levels of different inhibitor subsets are estimated, including designated chemical probes. Additionally, chemical probe analysis is extended to expert-curated representatives to correlate the views established by scientific community and evaluate their potential for chemical biology applications. Then, large-scale promiscuity analysis of kinase inhibitor data combining several public repositories is performed to subsequently explore promiscuity cliffs (PCs) and PC pathways and study structure-promiscuity relationships. Furthermore, an automated extraction protocol prioritizing the most informative pathways is proposed with focus on those containing promiscuity hubs. In addition, the generated promiscuity data structures including cliffs, pathways, and hubs are discussed for their potential in experimental and computational follow-ups and subsequently made publicly available. Finally, machine learning methods are used to develop classification models of kinase inhibitors with distinct experimental binding modes and their potential for the development of novel therapeutics is assessed.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectkinase inhibitors
dc.subjecthuman kinome
dc.subjectcompound promiscuity and selectivity
dc.subjectpolypharmacology
dc.subjectmachine learning
dc.subjectchemoinformatics
dc.subject.ddc540 Chemie
dc.subject.ddc570 Biowissenschaften, Biologie
dc.subject.ddc610 Medizin, Gesundheit
dc.titleChemoinformatics-Driven Approaches for Kinase Drug Discovery
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5n-57058
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID5705
ulbbnediss.date.accepted17.12.2019
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Molekulare Biomedizin / Life & Medical Sciences-Institut (LIMES)
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeGütschow, Michael


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright