Show simple item record

Mapping Properties of Bäcklund Transformations and the Asymptotic Stability of Soliton Solutions for the Nonlinear Schrödinger and Modified Korteweg-de-Vries Equation

dc.contributor.advisorKoch, Herbert
dc.contributor.authorKörner, Stefan
dc.date.accessioned2020-04-27T15:20:42Z
dc.date.available2020-04-27T15:20:42Z
dc.date.issued17.02.2020
dc.identifier.urihttp://hdl.handle.net/20.500.11811/8289
dc.description.abstractWe consider the cubic Nonlinear Schrödinger Equation (NLS) and the Modified Korteweg-de-Vries Equation (mKdV) in the one-dimensional, focusing case. For the mKdV, we also restrict ourselves to the case of real-valued solutions. The Lax system for the Nonlinear Schrödinger Hierarchy gives rise to a Bäcklund transformation, which connects the trivial zero solution to soliton solutions for both equations.
Building upon work by Mizumachi and Pelinovsky, as well as asymptotic stability results for the zero solution by Ifrim and Tataru (NLS) and Harrop-Griffiths (mKdV), we prove asymptotic stability of solitons via the Bäcklund transformation. This provides an alternative to other approaches in the literature in that we do not invoke an explicit analysis of the Riemann-Hilbert problem for solutions close to zero. Even in the absence of the kind of "structural" information about solutions provided by asymptotic expressions or the inverse scattering formalism, the arguments developed in this thesis would (at least) yield a weakened, "preliminary" form of our results, which involves small, time-dependent position and phase shift functions. Much of the proof might be applicable to other equations in the focusing NLS hierarchy. We ultimately establish convergence properties of the Jost solutions for small NLS and mKdV potentials in the Lax system, leading to a more precise, quantitative understanding of stability properties.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectBäcklund-Transformation
dc.subjectSolitonen
dc.subjectasymptotische Stabilität
dc.subjectStabilitätstheorie
dc.subjectNichtlineare Schrödinger-Gleichung
dc.subjectNLS-Hierarchie
dc.subjectmodifizierte Korteweg-de-Vries-Gleichung
dc.subjectBäcklund transformation
dc.subjectsolitons
dc.subjectasymptotic stability
dc.subjectstability theory
dc.subjectNonlinear Schrödinger equation
dc.subjectNLS hierarchy
dc.subjectmodified Korteweg-de-Vries equation
dc.subject.ddc510 Mathematik
dc.titleMapping Properties of Bäcklund Transformations and the Asymptotic Stability of Soliton Solutions for the Nonlinear Schrödinger and Modified Korteweg-de-Vries Equation
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-57604
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID5760
ulbbnediss.date.accepted2020-01-31
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Mathematisches Institut
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeVelázquez, Juan J. L.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright