Zur Kurzanzeige

3D-Silicon and Passive CMOS Sensors for Pixel Detectors in High Radiation Environments

dc.contributor.advisorWermes, Norbert
dc.contributor.authorPohl, David-Leon
dc.date.accessioned2020-10-30T16:18:52Z
dc.date.available2020-10-30T16:18:52Z
dc.date.issued30.10.2020
dc.identifier.urihttp://hdl.handle.net/20.500.11811/8743
dc.description.abstractThe future upgrade of the Large Hadron Collider to the High-Luminosity LHC demands new pixel detectors that can operate in environments with exceptionally high radiation. This requires investigations into new radiation-tolerant sensor technologies and readout electronics, and the advancement of radiation-damage models. In this work, planar- and 3D-silicon sensors from the latest upgrade of the ATLAS pixel detector~(IBL) and novel passive CMOS sensors are characterized after high levels of irradiation. New measurement techniques for the readout chip (ATLAS FE-I4) enabled precise charge-collection efficiency studies with highly segmented silicon sensors and the extraction of radiation-damage model parameters. A dedicated simulation, based on a model with just 2 parameters, successfully describes the dependence of charge collection on sensor voltage up to a fluence of 5e15 neq/cm² NIEL. The life-time of charge-carriers in silicon at 5e15 neq/cm² NIEL is determined to be (0.75 ± 0.08) ns. At 7e15 neq/cm², the charge-collection efficiency is about 50 % for 3D- and 250 um planar-silicon sensor designs. The 3D-silicon sensors demonstrate a much lower power consumption (~15 %), which is an important advantage for their potential usage in the innermost layer of the future pixel detector. For the outer pixel layer, which has relaxed requirements for radiation-tolerance (1e15 neq/cm²), a novel prototype of a planar silicon sensor is characterized. Since the sensor implantations are produced using a 150 nm CMOS process from LFoundry, they are termed 'passive CMOS' sensors. A detailed study with respect to crucial sensor parameters, such as bulk resistivity (> 2 kOhm-cm), capacitance (105 fF), and detection efficiency (99 %) reveals similar performance to current ATLAS planar-silicon sensors. Additionally, resistor biasing of pixels, a feature available in the CMOS process, enhances the detection efficiency by approximately 1 %. Driven by these promising results, the option to use passive CMOS sensors for the future ATLAS pixel detector is actively pursued.en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectPixeldetektoren
dc.subjectATLAS
dc.subjectSiliziumsensoren
dc.subjectstrahlentolerante Detektoren
dc.subjectStrahlenschädensimulation
dc.subjectpixel detectors
dc.subjectsilicon sensors
dc.subjectradiation tolerant detectors
dc.subjectbulk damage modelling
dc.subject.ddc530 Physik
dc.title3D-Silicon and Passive CMOS Sensors for Pixel Detectors in High Radiation Environments
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-60007
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID6000
ulbbnediss.date.accepted2020-01-08
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Physik/Astronomie / Physikalisches Institut (PI)
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeDesch, Klaus


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright