Zur Kurzanzeige

Supersymmetric methods in random matrix theory

dc.contributor.advisorDisertori, Margherita
dc.contributor.authorLager, Mareike
dc.date.accessioned2021-12-02T12:45:26Z
dc.date.available2021-12-02T12:45:26Z
dc.date.issued02.12.2021
dc.identifier.urihttps://hdl.handle.net/20.500.11811/9441
dc.description.abstractRandomness and chaos are key ingredients in the description of nature and are therefore central elements in mathematics and physics. A conducting metal becomes an insulator if there are enough random defects in its structure. This phase transition generated by randomness (also called Anderson transition) is a central point of study. It is an unproven conjecture that in dimension 3 there is such a phase transition between diffusive and isolated states while in dimension 1 there are proofs that only localization occurs.
This doctoral thesis provides insights into supersymmetric methods relevant for the study of two prominent random matrix models describing disordered materials: random Schrödinger operators and random band matrices.
The main idea in the following is - using the supersymmetric approach - to establish dual representations for the quantity of interest, which in turn can be studied via analytic tools, inspired by statistical mechanics.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectZufallsmatrizen
dc.subjectSupersymmetrie
dc.subjectRandom Matrices
dc.subjectSupersymmetry
dc.subject.ddc510 Mathematik
dc.titleSupersymmetric methods in random matrix theory
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-64596
ulbbn.pubtypeErstveröffentlichung
ulbbn.birthnameDittkrist
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID6459
ulbbnediss.date.accepted06.10.2021
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Institut für angewandte Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeFerrari, Patrik
ulbbnediss.contributor.gnd1080150161


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

InCopyright