Supersymmetric methods in random matrix theory
Supersymmetric methods in random matrix theory

dc.contributor.advisor | Disertori, Margherita | |
dc.contributor.author | Lager, Mareike | |
dc.date.accessioned | 2021-12-02T12:45:26Z | |
dc.date.available | 2021-12-02T12:45:26Z | |
dc.date.issued | 02.12.2021 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11811/9441 | |
dc.description.abstract | Randomness and chaos are key ingredients in the description of nature and are therefore central elements in mathematics and physics. A conducting metal becomes an insulator if there are enough random defects in its structure. This phase transition generated by randomness (also called Anderson transition) is a central point of study. It is an unproven conjecture that in dimension 3 there is such a phase transition between diffusive and isolated states while in dimension 1 there are proofs that only localization occurs.
This doctoral thesis provides insights into supersymmetric methods relevant for the study of two prominent random matrix models describing disordered materials: random Schrödinger operators and random band matrices. The main idea in the following is - using the supersymmetric approach - to establish dual representations for the quantity of interest, which in turn can be studied via analytic tools, inspired by statistical mechanics. | en |
dc.language.iso | eng | |
dc.rights | In Copyright | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Zufallsmatrizen | |
dc.subject | Supersymmetrie | |
dc.subject | Random Matrices | |
dc.subject | Supersymmetry | |
dc.subject.ddc | 510 Mathematik | |
dc.title | Supersymmetric methods in random matrix theory | |
dc.type | Dissertation oder Habilitation | |
dc.publisher.name | Universitäts- und Landesbibliothek Bonn | |
dc.publisher.location | Bonn | |
dc.rights.accessRights | openAccess | |
dc.identifier.urn | https://nbn-resolving.org/urn:nbn:de:hbz:5-64596 | |
ulbbn.pubtype | Erstveröffentlichung | |
ulbbn.birthname | Dittkrist | |
ulbbnediss.affiliation.name | Rheinische Friedrich-Wilhelms-Universität Bonn | |
ulbbnediss.affiliation.location | Bonn | |
ulbbnediss.thesis.level | Dissertation | |
ulbbnediss.dissID | 6459 | |
ulbbnediss.date.accepted | 06.10.2021 | |
ulbbnediss.institute | Mathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Mathematik / Institut für angewandte Mathematik | |
ulbbnediss.fakultaet | Mathematisch-Naturwissenschaftliche Fakultät | |
dc.contributor.coReferee | Ferrari, Patrik | |
ulbbnediss.contributor.gnd | 1080150161 |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
E-Dissertationen (4397)