Zur Kurzanzeige

The primary cilium is a unique lipid microdomain engineered to transduce extracellular cues

dc.contributor.advisorWachten, Dagmar
dc.contributor.authorKaiser, Fabian
dc.date.accessioned2022-04-06T06:57:25Z
dc.date.available2023-04-15T22:00:23Z
dc.date.issued06.04.2022
dc.identifier.urihttps://hdl.handle.net/20.500.11811/9731
dc.description.abstractCilia are membrane protrusions located at the surface of almost every vertebrate cell. Cilia come in two different flavors: motile cilia, which generate a fluid flow or propel cells for active movement, and immotile, also called primary cilia. Primary cilia are considered as cellular antennae that receive extracellular signals and transduce them into a cellular response. Primary cilia dysfunction has been linked to severe human diseases, collectively termed ciliopathies. However, the underlying molecular mechanisms are not well understood. The Hedgehog (Hh) pathway is the predominantly studied pathway in primary cilia. It signals via G protein-coupled receptors (GPCRs) to control ciliary cyclic adenosine monophosphate (cAMP) levels and, thereby, the transcription of Hh target genes. Dysregulation of the Hh signaling has been proposed to underlie the development of ciliopathies and human cancer. Subcellular signaling is crucially determined by the local lipid environment. The lipid identity of the primary cilium determines ciliary signaling and seems to be disturbed under pathophysiological conditions. However, the ciliary lipid domain architecture, its regulation, and how it controls ciliary signaling remains elusive. To delineate the lipid composition, I established a method to isolate and enrich the primary cilia membrane (CM) followed by mass spectrometric analysis. My results demonstrate that the CM is enriched in glycosphingolipids (GSLs), which determine the biophysical properties of the membrane. In turn, the ciliary localization of Hh signaling components is altered, i.e., the localization of ciliary GPCRs. To analyze downstream signaling, I established fluorescent cAMP biosensors to measure cAMP dynamics in the primary cilium and, thereby, unravel the molecular mechanisms underlying ciliary cAMP signaling under physiological and pathological conditions.en
dc.language.isoeng
dc.rightsNamensnennung 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectPrimäres Zilium
dc.subjectMembranordnung
dc.subjectLipidomics
dc.subjectFluoreszenzmikroskopie
dc.subjectRT-qPCR
dc.subjectHedgehog Signalweg
dc.subjectLipid Homeostase
dc.subjectOptogenetik
dc.subjectprimary cilium
dc.subjectmembrane order
dc.subjectenvironment-sensitive dyes
dc.subjectlipidomics
dc.subjectfluorescence microscopy
dc.subjectlipid homeostasis
dc.subjectoptogenetics
dc.subject.ddc570 Biowissenschaften, Biologie
dc.titleThe primary cilium is a unique lipid microdomain engineered to transduce extracellular cues
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-65857
dc.relation.doihttps://doi.org/10.1042/BST20190246
dc.relation.doihttps://doi.org/10.7554/eLife.57907
dc.relation.doihttps://doi.org/10.1002/1873-3468.13816
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID6585
ulbbnediss.date.accepted03.03.2022
ulbbnediss.instituteMedizinische Fakultät / Institute : Institut für Angeborene Immunität
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeThiele, Christoph
ulbbnediss.contributor.orcidhttps://orcid.org/0000-0003-4451-6079
ulbbnediss.date.embargoEndDate15.04.2023
ulbbnediss.contributor.gnd1270461907


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Die folgenden Nutzungsbestimmungen sind mit dieser Ressource verbunden:

Namensnennung 4.0 International