Show simple item record

Advancing Knowledge-Enhanced Conversational Systems Leveraging Language Models

dc.contributor.advisorLehmann, Jens
dc.contributor.authorRony, Md Rashad Al Hasan
dc.date.accessioned2023-09-18T09:53:41Z
dc.date.available2023-09-18T09:53:41Z
dc.date.issued18.09.2023
dc.identifier.urihttps://hdl.handle.net/20.500.11811/11046
dc.description.abstractLarge language models empowering recent conversational systems such as Alexa and Siri require external knowledge to generate informative and accurate dialogues. The knowledge may be provided in structured or unstructured forms, such as knowledge graphs, documents, and databases. Typically, language models face several issues when attempting to incorporate knowledge for conversational question answering: 1) they are unable to capture the relationship between facts in a structured knowledge, 2) they lack the capability of handling the dynamic knowledge in a multi-domain conversational setting, 3) because of the scarcity of unsupervised approaches for question answer over knowledge graphs (KGQA), systems often require a large amount of training data, and 4) because of the complexities and dependencies involved in the KGQA process it is difficult to generate a formal query for question answering. All of these issues result in uninformative and incorrect answers. Furthermore, an evaluation metric that can capture various aspects of the system response, such as semantic, syntactic, and grammatical acceptability, is necessary to ensure the quality of such conversational question answering systems.
Addressing the shortcomings in this thesis, we propose techniques for incorporating structured and unstructured knowledge into pre-trained language models to improve conversational question answering systems. First, we propose a novel task-oriented dialogue system that introduces a structure-aware knowledge embedding and knowledge graph-weighted attention masking strategies to facilitate a language model in selecting relevant facts from a KG for informative dialogue generation. Experiment results on the benchmark datasets demonstrate significant improvement over previous baselines. Next, we introduce an unsupervised KGQA system, leveraging several pre-trained language models to improve the essential components (i.e., entity and relation linking) of KGQA. The system further introduces a novel tree-based algorithm for extracting the answer entities from a KG. The proposed techniques relax the need for training data to improve KGQA performance. Then, we introduce a generative system that combines the benefits of end-to-end and modular systems and leverages a GPT-2 language model to learn graph-specific information (i.e., entities and relations) in its parameters to generate SPARQL query for extracting answer entities from a KG. The proposed system encodes linguistic features of a question to understand complex question patterns for generating accurate SPARQL queries. Afterward, we developed a system demonstrator for question answering over unstructured documents about climate change. Pre-trained language models are leveraged to index unstructured text documents into a dense space for document retrieval and question answering. Finally, we propose an automatic evaluation metric, incorporating several core aspects of natural language understanding (language competence, syntactic and semantic variation). A comprehensive evaluation exhibits the effectiveness of our proposed metric over the state-of-the-art approaches. Overall, our contributions exhibit that the effective incorporation of external knowledge into a language model significantly improves the performance of conversational question answering. We made all the resources and code used in the proposed systems publicly available.
en
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc004 Informatik
dc.titleAdvancing Knowledge-Enhanced Conversational Systems Leveraging Language Models
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5-72215
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID7221
ulbbnediss.date.accepted05.09.2023
ulbbnediss.instituteMathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Informatik / Institut für Informatik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeWrobel, Stefan
ulbbnediss.contributor.orcidhttps://orcid.org/0000-0003-0665-389X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright