Schmied, Richard: On Approximability of Bounded Degree Instances of Selected Optimization Problems. - Bonn, 2013. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.

Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5n-33005

Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5n-33005

@phdthesis{handle:20.500.11811/5730,

urn: https://nbn-resolving.org/urn:nbn:de:hbz:5n-33005,

author = {{Richard Schmied}},

title = {On Approximability of Bounded Degree Instances of Selected Optimization Problems},

school = {Rheinische Friedrich-Wilhelms-Universität Bonn},

year = 2013,

month = aug,

note = {In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard optimization problems restricted to instances with bounded degree, occurrence or weight parameter. Specifically, we consider the family of dense instances, where typically the average degree is bounded from below by some function of the size of the instance. Complementarily, we examine the family of sparse instances, in which the average degree is bounded from above by some fixed constant. We focus on developing new methods for proving explicit approximation hardness results for general as well as for restricted instances.

The fist part of the thesis contributes to the systematic investigation of the VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs with density and regularity constraints. We design efficient approximation algorithms for the problems with improved performance guarantees as compared to the general case. On the other hand, we prove the optimality of our approximation upper bounds under the Unique Games Conjecture or a variant.

In the second part of the thesis, we study mainly the approximation hardness of restricted instances of selected global optimization problems. We establish improved or in some cases the first inapproximability thresholds for the problems considered in this thesis such as the METRIC DIMENSION problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER TREE problem. We introduce a new reductions method for proving explicit approximation lower bounds for problems that are related to the TRAVELING SALESPERSON (TSP) problem. In particular, we prove the best up to now inapproximability thresholds for the general METRIC TSP problem, the ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem, the MAXIMUM TSP problem and TSP problems with bounded metrics.},

url = {http://hdl.handle.net/20.500.11811/5730}

}

urn: https://nbn-resolving.org/urn:nbn:de:hbz:5n-33005,

author = {{Richard Schmied}},

title = {On Approximability of Bounded Degree Instances of Selected Optimization Problems},

school = {Rheinische Friedrich-Wilhelms-Universität Bonn},

year = 2013,

month = aug,

note = {In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard optimization problems restricted to instances with bounded degree, occurrence or weight parameter. Specifically, we consider the family of dense instances, where typically the average degree is bounded from below by some function of the size of the instance. Complementarily, we examine the family of sparse instances, in which the average degree is bounded from above by some fixed constant. We focus on developing new methods for proving explicit approximation hardness results for general as well as for restricted instances.

The fist part of the thesis contributes to the systematic investigation of the VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs with density and regularity constraints. We design efficient approximation algorithms for the problems with improved performance guarantees as compared to the general case. On the other hand, we prove the optimality of our approximation upper bounds under the Unique Games Conjecture or a variant.

In the second part of the thesis, we study mainly the approximation hardness of restricted instances of selected global optimization problems. We establish improved or in some cases the first inapproximability thresholds for the problems considered in this thesis such as the METRIC DIMENSION problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER TREE problem. We introduce a new reductions method for proving explicit approximation lower bounds for problems that are related to the TRAVELING SALESPERSON (TSP) problem. In particular, we prove the best up to now inapproximability thresholds for the general METRIC TSP problem, the ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem, the MAXIMUM TSP problem and TSP problems with bounded metrics.},

url = {http://hdl.handle.net/20.500.11811/5730}

}