Show simple item record

Zero Partition Cycles
A Recursive Formula for Characteristic Classes of Surface Bundles

dc.contributor.advisorHamenstädt, Ursula
dc.contributor.authorPedron, Mark
dc.date.accessioned2020-04-23T20:29:21Z
dc.date.available2020-04-23T20:29:21Z
dc.date.issued25.04.2017
dc.identifier.urihttp://hdl.handle.net/20.500.11811/7141
dc.description.abstractThis thesis is concerned with characteristic classes of surface bundles. A complete description of the ring of stable rational characteristic classes is given by the work of Madsen and Weiss as the polynomial ring in the Miller-Morita-Mumford classes. This work introduces characteristic classes, which are are given by partitions of zeroes of abelian differentials. These classes are not new, but translate the notion of strata of abelian differentials to real-differential surface bundles. The Isomorphism-Theorem 4.4.3 exposes the partition classes as alternative basis for the ring of stable characteristic classes. The proof of the isomorphism theorem is carried out via a recursive computation in terms of the Miller-Morita-Mumford classes.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.titleZero Partition Cycles
dc.title.alternativeA Recursive Formula for Characteristic Classes of Surface Bundles
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5n-46573
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID4657
ulbbnediss.date.accepted2017-02-03
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeEbert, Johannes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright