Show simple item record

Lagrangian field theories: ind/pro-approach and L-algebra of local observables

dc.contributor.advisorTeichner, Peter
dc.contributor.authorLeón Delgado, Néstor
dc.date.accessioned2020-04-25T01:11:55Z
dc.date.available2020-04-25T01:11:55Z
dc.date.issued11.05.2018
dc.identifier.urihttp://hdl.handle.net/20.500.11811/7534
dc.description.abstractField Theories in Physics can be formulated giving a local Lagrangian density. Locality is imposed using the infinite jet bundle. That bundle is viewed as a pro-finite dimensional smooth manifold and that point of view has been compared to different topological and Frechét structures on it. A category of local (insular) manifolds has been constructed. Noether's second theorem is reviewed and the notion of Lie pseudogroups is explored using these concepts.
The L-algebra of local observables is defined depending only on the cohomology of the Lagrangian (using a result in multisymplectic manifold which has been extended to the local category). That local pre-multisymplectic form, called the Poincaré-Cartan can be thought of as a coordinate free, cohomological version of other similar structures in the field.
dc.language.isoeng
dc.rightsIn Copyright
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMathematical physics
dc.subjectSymplectic geometry
dc.subjectDifferential geometry
dc.subjectHigher differential geometry
dc.subjectL-infinity algebra
dc.subjectVariational calculus
dc.subjectLagrangian Field theory
dc.subjectObservables
dc.subjectFrechet geometry
dc.subject.ddc510 Mathematik
dc.titleLagrangian field theories: ind/pro-approach and L-algebra of local observables
dc.typeDissertation oder Habilitation
dc.publisher.nameUniversitäts- und Landesbibliothek Bonn
dc.publisher.locationBonn
dc.rights.accessRightsopenAccess
dc.identifier.urnhttps://nbn-resolving.org/urn:nbn:de:hbz:5n-50257
ulbbn.pubtypeErstveröffentlichung
ulbbnediss.affiliation.nameRheinische Friedrich-Wilhelms-Universität Bonn
ulbbnediss.affiliation.locationBonn
ulbbnediss.thesis.levelDissertation
ulbbnediss.dissID5025
ulbbnediss.date.accepted2018-05-04
ulbbnediss.instituteAngegliederte Institute, verbundene wissenschaftliche Einrichtungen : Max-Planck-Institut für Mathematik
ulbbnediss.fakultaetMathematisch-Naturwissenschaftliche Fakultät
dc.contributor.coRefereeBallmann, Werner


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

The following license files are associated with this item:

InCopyright