Investigation of BCRP-inhibitors using QSAR and machine learning methods
Investigation of BCRP-inhibitors using QSAR and machine learning methods
dc.contributor.advisor | Wiese, Michael | |
dc.contributor.author | Marighetti, Federico | |
dc.date.accessioned | 2020-04-26T22:01:13Z | |
dc.date.available | 2020-04-26T22:01:13Z | |
dc.date.issued | 05.08.2019 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11811/8055 | |
dc.description.abstract | BCRP is the second member of the subfamily G of the ABC transporters. BCRP is involved in several physiological functions, including protection of the human body from xenobiotics. The overexpression of this membrane protein in certain tumor cell lines leads to cross-resistance against various chemotherapeutic drugs. In this work, the inhibitory activity of several compounds against BCRP and P-gp were assayed using a Hoechst 33342 assay for BCRP and a Calcein AM assay for P-gp. Furthermore, the potency of the studied compounds has been rationalized using a classical QSAR approach. Finally, three machine learning algorithms (Self-Organizing Maps, Support Vector Machine and k-Nearest Neighbors) were used, in order to generate a global model useful to predict if small ligands could be (or not) BCRP-inhibitors. | en |
dc.language.iso | eng | |
dc.rights | In Copyright | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | BCRP | |
dc.subject | QSAR | |
dc.subject | machine learning | |
dc.subject | drug design | |
dc.subject | SOM | |
dc.subject | SVM | |
dc.subject | k-NN | |
dc.subject | ABC-transporters | |
dc.subject.ddc | 615 Pharmakologie, Therapeutik | |
dc.title | Investigation of BCRP-inhibitors using QSAR and machine learning methods | |
dc.type | Dissertation oder Habilitation | |
dc.publisher.name | Universitäts- und Landesbibliothek Bonn | |
dc.publisher.location | Bonn | |
dc.rights.accessRights | openAccess | |
dc.identifier.urn | https://nbn-resolving.org/urn:nbn:de:hbz:5n-55355 | |
ulbbn.pubtype | Erstveröffentlichung | |
ulbbnediss.affiliation.name | Rheinische Friedrich-Wilhelms-Universität Bonn | |
ulbbnediss.affiliation.location | Bonn | |
ulbbnediss.thesis.level | Dissertation | |
ulbbnediss.dissID | 5535 | |
ulbbnediss.date.accepted | 23.07.2019 | |
ulbbnediss.institute | Mathematisch-Naturwissenschaftliche Fakultät : Fachgruppe Pharmazie / Pharmazeutisches Institut | |
ulbbnediss.fakultaet | Mathematisch-Naturwissenschaftliche Fakultät | |
dc.contributor.coReferee | Bendas, Gerd |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
E-Dissertationen (4155)